Lesson 7. Equations of Planes in 3D

1 Today...

- Different ways of writing equations for planes in 3D

2 Vector and scalar equations

- A plane is determined by
- a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the plane and
- a normal vector \vec{n} orthogonal to the plane
- Let \vec{r}_{0} be the position vector of P_{0}; that is, $\vec{r}_{0}=$
- Let \vec{r} be the position vector of some point on the plane, say $\vec{r}=\langle x, y, z\rangle$
$\Rightarrow \vec{r}-\vec{r}_{0}$ is a vector in the plane, and must be orthogonal to the normal vector \vec{n}

- The vector equation of the plane is
- Let $\vec{n}=\langle a, b, c\rangle$
- Expanding the vector equation, we obtain
- The scalar equation of the plane is

Example 1.

a. Find an equation of the plane through the point $(-1,4,2)$ with normal vector $\vec{n}=\langle 4,3,2\rangle$.
b. Find where the plane intercepts the x-, y-and z-axes. Sketch the plane in the first orthant.

Example 2. Find an equation of the plane that passes through the point $(1,2,3)$ and is perpendicular to the line $x=3 t, y=1+t, z=2-t$.

